x^2+25+6x^2-10=180

Simple and best practice solution for x^2+25+6x^2-10=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+25+6x^2-10=180 equation:



x^2+25+6x^2-10=180
We move all terms to the left:
x^2+25+6x^2-10-(180)=0
We add all the numbers together, and all the variables
7x^2-165=0
a = 7; b = 0; c = -165;
Δ = b2-4ac
Δ = 02-4·7·(-165)
Δ = 4620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4620}=\sqrt{4*1155}=\sqrt{4}*\sqrt{1155}=2\sqrt{1155}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1155}}{2*7}=\frac{0-2\sqrt{1155}}{14} =-\frac{2\sqrt{1155}}{14} =-\frac{\sqrt{1155}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1155}}{2*7}=\frac{0+2\sqrt{1155}}{14} =\frac{2\sqrt{1155}}{14} =\frac{\sqrt{1155}}{7} $

See similar equations:

| 2/3x+5/8x=26 | | Y-5.4=0.3(x-7) | | 500+.20x+100=x | | (15x+11)=(5x+69) | | 3x+19+15x=115 | | 6x/7+8=6 | | -3x-4(x+4)=3(x-1) | | 7(-x+2)=11 | | -5-x=-2x-1 | | -1-4x=1-5x | | 2x+3+20=90 | | 25=7-2y | | a+154=180 | | x2=166 | | x-15=115 | | 1/2(15x+11)=88 | | 14x-3=81 | | (w^2+120)+w+6w=180 | | (w+120)+w+6w=180 | | 6x+7=15x=83 | | 4+3(2x-5)=x-9 | | 3.75=k+18.19 | | 0.5x^2-x+0.465=0 | | 29-4x=3x-34 | | 6(y+1.5)=-1.5 | | 49-29d=1 | | 3x+4=6x-2(x=2) | | 50=4.5^t | | 3x+5=-6x-10 | | 1x1x1x1x=1/2 | | (4a-3)(3a+4)=(2a-1)(6a+1) | | 8-12x=x2(x-6) |

Equations solver categories